If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15k-10k^2=0
a = -10; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·(-10)·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*-10}=\frac{-30}{-20} =1+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*-10}=\frac{0}{-20} =0 $
| -7x+4=30 | | -6x+14=-28 | | 4x+8=-41-3 | | 3x+x+52=221 | | 100=x-(x*0.04) | | F(x)=x+1/× | | 5s-8=7+2s | | 3x+15-57+x=11 | | 6x+28=14x+68 | | 5x+7=2x+13.X= | | 2x+5=9x+13 | | 5(4w+8)/2=-5 | | -8-3x=-16+13x | | 2x–3=x–(3x–5) | | 5x+7=2x+13X= | | 5+2k/7=-1 | | X+1/2+2x+3/3=5 | | 10(x-5)=-5(x+4)+30 | | -8(s+5)=-100 | | 5(2x+3)-6(x-3)=47 | | 8(x-4)=4(x-9)+16 | | 7y+1+4y+14=180 | | 2(4×+3)=6x+14 | | 7y+1=4y+14 | | 7=m+1m= | | 4x+8=x-224x+8=x-22 | | x^2+6x=182-1/2x | | 38+5k=8k+33 | | 10h+9=86 | | -7+9x=11 | | 7x+4=40-5x | | 49+x^2=(5+x)^2 |